

STRUCTURE AND ABSOLUTE STEREOCHEMISTRY OF VANILLOSMIN, A GUAIANOLIDE FROM *VANILLOSMOPSIS ERYTHROPAPPA*

ATTILIO CORBELLA, PIERLUIGI GARIBOLDI and GIANCARLO JOMMI

Laboratorio di Chimica Organica, Facoltà di Scienze, Università degli Studi di Milano, Via Saldini, 50, 20133,
Milano, Italia

FULVIA ORSINI

Istituto di Chimica Organica, Facoltà di Scienze, Centro per lo studio delle Sostanze Organiche Naturali del
C.N.R., Via Saldini, 50, 20133, Milano, Italia

and

GIORGIO FERRARI

Simes S.p.A., Laboratori di Ricerche Chimiche, Via Bellerio, 41, 20161, Milano, Italia

(Received 8 May 1973. Accepted 17 August 1973)

Key Word Index—*Vanillosmopsis erythropappa*; Compositae; vanillosmin; guianolide.

Abstract—The structure and absolute stereochemistry of vanillosmin were established by chemical and spectral evidence and by comparison with *O*-acetyl-isophoto- α -santonic lactone and tetrahydroartabsin "C".

INTRODUCTION

THE ESSENTIAL oil from the wood of *Vanillosmopsis erythropappa* Sch.-Bip. (Compositae),¹ contains (−) α -bisabolol, accompanied by small amounts of β -bisabolene and isovaleric acid.² More recently, Gilbert *et al.*³ reported that this oil displays schistosomicidal activity.

We have examined the acetone extract of the same wood and isolated in high yield, besides the above mentioned compounds, a new sesquiterpenoid, which we named vanillosmin (**1**).⁴ In this paper we report the determination of its structure and assign absolute configuration to all the asymmetric centers present in the molecule (C-1, C-5, C-6, and C-7).

* A preliminary communication of this finding was presented at the 7th Int. Symp. on the Chemistry of Natural Products, Riga 1970 (Communication E-10). Very recently, W. Vichnewski and B. Gilbert⁴ isolated a compound from *Eremanthus elaeagnus*, which they named eremanthine and for which they proposed a structure identical with that of vanillosmin, except for the configuration at C-1 which was unspecified. The reported PMR, MS and IR data of eremanthine closely resemble those of vanillosmin, whereas the m.p. and particularly the optical rotation are different.

¹ HOEHNE, F. C. (1939) in *Plantas e substâncias vegetais toxicas e medicinais* p. 321. Ed. Graphicars, S. Paulo-Rio.

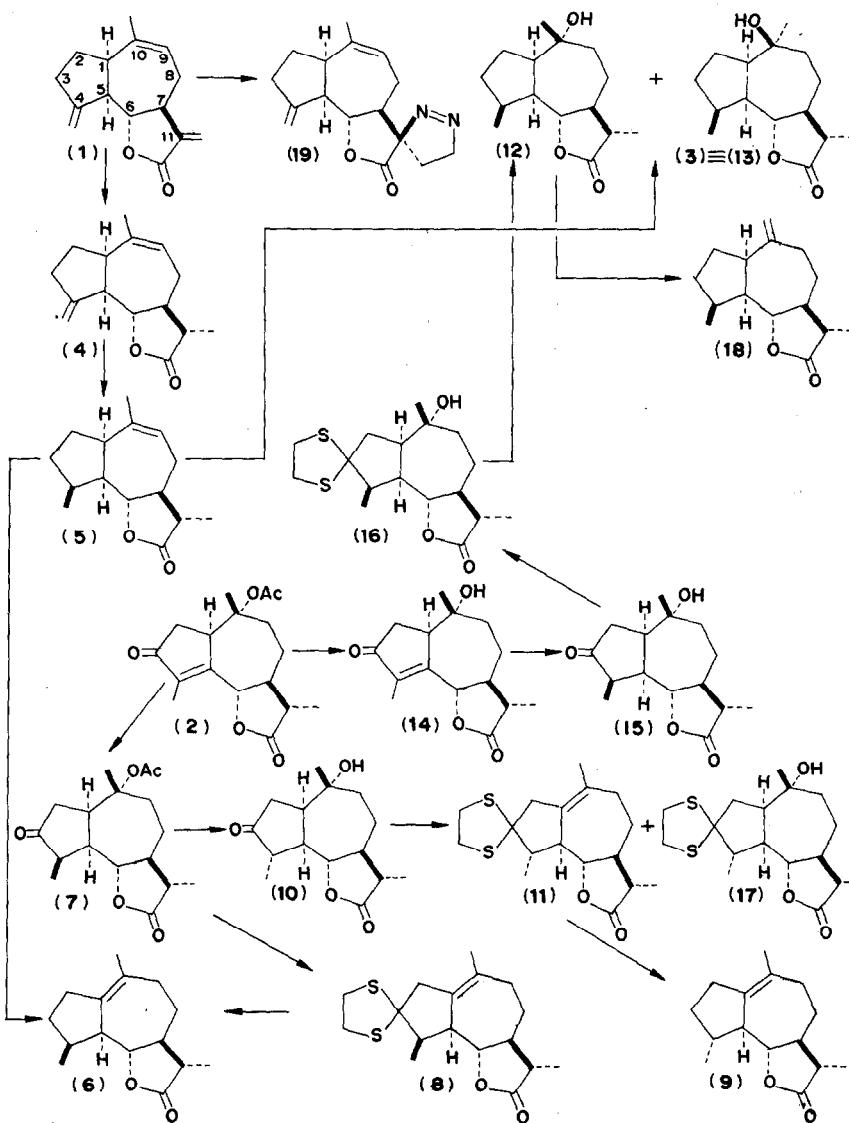
² GOTTLIEB, O. R. and MAGALHÃES, M. T. (1958) *Perfumery Essential Oil Record* **49**, 711; *Chem. Abstr.* **53**, 10667.

³ GILBERT, G., DE SOUZA, J. P., FASIO, M., KITAGAWA, M., NASCIMENTO, S. S. C., FORTES, C. C., DO PRADO SEABRA, A. and PELLEGRINO, J. (1970) *Anais Acad. Bras. Ciências* **42** supl. 397.

⁴ VICHNEWSKI, W. and GILBERT, B. (1972) *Phytochemistry* **11**, 2563.

Vanillosmuin belongs to the guaianolides, many of which have a double bond or an oxygen function at C-1 or C-5. Only a limited number bear two hydrogens in these positions, such as estafiatin, the zaluzanins, ligustrin and the cumambrins,⁵ the lipidiols,⁶ grosheimin,⁶⁻⁸ cynaropicrin and isoamberboin,⁷ and viscidulin.⁹ The determination of the geometry of the ring junction is essential in order to understand the way in which an acyclic precursor undergoes cyclization in the biosynthesis of guaianolides.¹⁰ In the past, this problem has been examined only by physico-chemical methods which have given rise, in many cases, to ambiguities.¹¹ More recently, X-ray analysis¹²⁻¹⁴ and chemical correlation⁷⁻⁹ have clearly shown that in all the known guaianolides the hydrogens at C-1 and C-5 are in the α position, the only exceptions being centaurepensin,¹³ in which they are both β , and gaillardin,¹⁴ which is, to our knowledge, the only guaianolide having the two hydrogens of the junction in a *trans* relationship, 1- β and 5- α .*

RESULTS AND DISCUSSION


Structure of Vanillosmuin

Vanillosmuin (**1**), a crystalline compound m.p. 62-62.5°, has the molecular formula $C_{15}H_{18}O_2$ as shown by elemental analysis and MS (M^+ 230 *m/e*). It exhibits absorption bands at 1755, 1655, 895 and 820 cm^{-1} in the IR spectrum and a maximum at 218 nm in the UV, typical of a γ -lactone ring conjugated with an exocyclic methylene. The presence of two vinyl protons β to a carbonyl group is confirmed by the PMR spectrum which displays two doublets at 6.18 and 5.48 δ (1H each, *J* 3.2 Hz); the protons of a second non conjugated exocyclic methylene resonate at 5.22 and 5.04 δ as two one-proton broad signals. Other resonances in the spectrum are in keeping with the presence of a vinyl proton (5.58 δ , 1H, *m*), a vinyl methyl (1.82 δ , 3H *b* *s*) and a proton on a carbon bearing an acyloxy group, coupled with two other separate protons (3.93 δ , 1H, *t*, *J* 9.5 Hz).

$NaBH_4$ reduction of vanillosmuin (**1**) under mild conditions and for a short time affords a dihydroderivative $C_{15}H_{20}O_2$ (**4**). Only the conjugated double bond is reduced and the reaction is highly stereospecific;^{6,7,15} the compound (**4**) lacks any absorption above

* We thank the Referee who informed us that, after the mailing of this note, a paper appeared where the structure of two new guaianolides with *trans* ring junction is proposed mainly on the basis of NMR analysis (FURUKAWA, H., LEE, K. H., SHINGU, T., MECK, R. and PIANTADOSI, C. (1973) *J. Org. Chem.* **38**, 1722).

- ⁵ ROMO, J. and LOPEZ VANEGAS, C. (1969) *Bol. Inst. Quim. Univ. Nac. Auton., Mex.* **21**, 82.
- ⁶ GONZÁLES, A. G., GARCÍA MARRERO, B. and BRETON, J. L. (1970) *Anal. de Química* **66**, 799.
- ⁷ SAMEK, Z., HOLUB, M., DROŽDŽ, B., JOMMI, G., CORBELLA, A. and GARIBOLDI, P. (1971) *Tetrahedron Letters* 4775; CORBELLA, A., GARIBOLDI, P., JOMMI, G., SAMEK, Z., HOLUB, M., DROŽDŽ, B. and BŁOSZIK, E. (1972) *Chem. Commun.* 386.
- ⁸ SAMEK, Z., HOLUB, M., VOKÁČ, K., DROŽDŽ, B., JOMMI, G., GARIBOLDI, P. and CORBELLA, A. (1972) *Coll. Czech. Chem. Commun.* **37**, 2611.
- ⁹ SHAFIZADEH, F. and BHADANE, N. R. (1972) *J. Org. Chem.* **37**, 3168.
- ¹⁰ PARKER, W., ROBERTS, J. S. and RAMAGE, R. (1967) *Quart. Rev. (Lond.)* **21**, 331.
- ¹¹ SÁNCHEZ-VIESCA, F. and ROMO, J. (1963) *Tetrahedron* **19**, 1285; ROMO DE VIVAR, A., CABRERA, A., ORTEGA, A. and ROMO, J. (1967) *Tetrahedron* **23**, 3903; ROMO, J., RIOS, T. and QUIJANO, L. (1968) *Tetrahedron* **24**, 6087; ROMO, J., ROMO DE VIVAR, A. and DÍAZ, E. (1968) *Tetrahedron* **24**, 5625.
- ¹² THIESSEN, W. E., HOPE, H., ZARGHAMI, N., HEINZ, D. E., DEVEL, P. and HAHN, E. A. (1969) *Chem. Ind.* 460.
- ¹³ HARLEY-MASON, J., HEWSON, A. T., KENNARD, O. and PETTERSEN, R. C. (1972) *Chem. Commun.* 460.
- ¹⁴ DULLFORCE, T. A., SIM, G. A., WHITE, D. N. J., KELSEY, J. E. and MORRIS KUPCHAN, S. (1969) *Tetrahedron Letters* 973.
- ¹⁵ MATHUR, S. B., HIREMATH, S. V., KULKARNI, G. H., KELKAR, G. R., BHATTACHARYYA, S. C., SIMONOVIC, D. and RAO, A. S. (1965) *Tetrahedron* **21**, 3575.

205 nm in the UV, whereas in the IR spectrum shows the absorption bands of a saturated γ -lactone at 1770 cm^{-1} and of double bonds at 1660 and 895 cm^{-1} . Comparison of the PMR spectrum of (4) with that of (1) shows that the signals at 6.18 and 5.48δ are replaced by a new three proton doublet at 1.22δ ($J 6\text{ Hz}$), thus indicating the presence of a secondary methyl group.

Reduction of dihydrovanillosmi (4) with H_2 in the presence of Wilkinson's soluble catalyst¹⁶ affords tetrahydrovanillosmi (5), $\text{C}_{15}\text{H}_{22}\text{O}_2$, an oily compound derived from saturation of the exocyclic double bond. Spectral data are in agreement with the structure (5): a band at 1650 cm^{-1} in the IR clearly indicates that a double bond is still present in

¹⁶ OSBORN, J. A., JARDINE, F. H., YOUNG, J. F. and WILKINSON, G. (1966) *J. Chem. Soc. A*, 1711.

the molecule; in the PMR a new doublet at $1\cdot15\delta$ (J 6 Hz) attributable to a secondary methyl replaces the signals of the two vinyl protons at $5\cdot22$ and $5\cdot04\delta$ in the spectrum of (**1**), whereas the signals of the vinyl methyl and vinyl proton are unchanged. This hydrogenation is highly stereospecific; GC-MS examination of the crude reaction mixture shows that only traces of the epimer at C-4 are formed during the reaction.

The three products, (**1**), (**4**) and (**5**) are very sensitive to light and heat; they must be stored in the dark and below 0° , or insoluble polymeric substances are formed.

Treatment of (**5**) with H_2 in EtOAc in the presence of Pd/C results in the isomerization of the double bond to the tetrasubstituted position: the main product of the reaction is isotetrahydrovanillosmi (**6**), together with very small amounts of hexahydroderivatives of (**1**).

Structure and absolute stereochemistry of isotetrahydrovanillosmi

Isotetrahydrovanillosmi (**6**), $C_{15}H_{22}O_2$, is a crystalline compound; in its PMR spectrum there are no more signals attributable to vinyl protons, but the broad singlet of a vinyl methyl at $1\cdot75\delta$ and the doublets of two secondary methyls at $0\cdot92$ and $1\cdot22\delta$ are still present.

Hydrogenation under pressure of *O*-acetyl-isophoto- α -santonic lactone (**2**)¹⁷ in anhydrous ethanol and in the presence of Pd/C affords in good yield the dihydroderivative (**7**) of known absolute stereochemistry.¹⁸ On treatment of (**7**) with 1,2-ethanedithiol and $BF_3\text{-Et}_2O$, the thioacetal (**8**) is formed with elimination of acetic acid. Reductive removal of the thioacetal group of (**8**) with Raney-Nickel affords a crystalline compound identical in all respects with isotetrahydrovanillosmi (**6**).¹⁹

To ensure that the acidic treatment of (**7**) has not affected the configuration of the methyl group at C-4, which is known to be more stable in the α than in the β position,^{18,20} we prepared the C-4 epimer of (**6**). Alkaline treatment of *O*-acetyl-dihydroisophoto- α -santonic lactone (**7**) gives (**10**) as a consequence of hydrolysis of the acetate and epimerization at C-4. Thioacetalization of (**10**) yields two products in comparable amounts: one (**11**) still bears the tertiary hydroxyl, the other (**11**) has lost a molecule of water. Desulphurization of (**11**) affords a crystalline substance (**9**), which is different from isotetrahydrovanillosmi (**6**) and has recently been prepared also by Šorm *et al.*²¹ in a similar way.

The described correlation confirms the structure proposed for isotetrahydrovanillosmi (**6**) and establishes the absolute configuration at C-5, C-6 and C-7 of vanillosmi as shown in (**1**).

Absolute configuration at C-1 of vanillosmi

The reaction of oxymercuration-demercuration according to Brown²² on tetrahydrovanillosmi (**5**) affords two isomeric hydroxy-lactones (**12**) and (**13**) in a molar ratio 1:12. The less abundant of these hydroxy-lactones, (**12**), is a crystalline compound, m.p. 127° , with a molecular formula $C_{15}H_{24}O_3$, as shown by elemental analysis and MS. The IR spectrum indicates the presence in its molecule of an hydroxyl (3590 cm^{-1}) and a γ -lactone

¹⁷ BARTON, D. H. R., DE MAYO, P. and SHAFIQ, M. (1957) *J. Chem. Soc.* 929; BUCHI, G., LOEWENTHAL, H. J. E. and KAUFFMAN, J. M. (1966) *J. Am. Chem. Soc.* **88**, 3403.

¹⁸ WHITE, E. H., EGUCHI, S. and MARX, J. N. (1969) *Tetrahedron* **25**, 2099; and literature cited therein.

¹⁹ SUCHÝ, M., HEROUT, V. and ŠORM, F. (1964) *Coll. Czech. Chem. Commun.* **29**, 1829.

²⁰ BARTON, D. H. R., LEVISALLES, J. D. E. and PINHEY, J. T. (1962) *J. Chem. Soc.* 3472.

²¹ VOKÁČ, K., SAMEK, Z., HEROUT, V. and ŠORM, F. (1972) *Coll. Czech. Chem. Commun.* **37**, 1346.

²² BROWN, H. C. and GEOGHEGAN, P. J. Jr. (1972) *J. Org. Chem.* **37** (12), 1937; and literature cited therein.

(1762 cm^{-1}). The tertiary nature of the hydroxyl is supported by the PMR spectrum which displays, besides the signals of two secondary methyls at 0.92 and 1.20 δ , a singlet for a tertiary methyl bound to an oxygen bearing carbon (1.22 δ). The structure of (12) has been unambiguously established by the following synthesis.

Alkaline hydrolysis of (2) gives isophoto- α -santonic lactone (14)¹⁷ accompanied by small amounts of an isomeric substance whose spectral data suggest epimerization at C-1. Catalytic hydrogenation under pressure converts (14) into its dihydroderivative (15)²⁰ in high yields; treatment of the latter with ethanedithiol and $\text{BF}_3\text{-Et}_2\text{O}$ at low temperature to avoid dehydration of the tertiary alcohol, affords the thioacetal (16), $\text{C}_{15}\text{H}_{26}\text{O}_3\text{S}_2$, a crystalline compound, m.p. 220–222°. After reduction of (16) with Raney–Nickel, a product identical with the hydroxylactone (12) derived from tetrahydrovanillosmi (5) is obtained. Recently, Šorm *et al.*²¹ obtained the same compound as a by-product of the hydrogenation of (14) over palladium catalyst.

The most abundant product of the oxymercuration–demercuration reaction on tetrahydrovanillosmi (5) is the hydroxy-lactone (13), a crystalline compound, m.p. 136°, which is the C-10 epimer of (12), according to its analytical data. In the IR spectrum, the absorption band at 1740 cm^{-1} indicates that the carbonyl of the γ -lactone is hydrogen bonded with the tertiary hydroxyl; the PMR spectrum is very similar to the one of (12) showing the presence of two secondary methyls (0.93 and 1.20 δ) and one tertiary methyl on oxygen bearing carbon (1.21 δ). To ensure that the configuration at C-10 is the only difference between (12) and (13), the former was dehydrated with thionyl chloride and pyridine at –20°. The anhydroderivative (18) exhibits two bands at 1640 and 900 cm^{-1} in the IR attributable to an exocyclic methylene; in the PMR spectrum, the resonances of the two secondary methyls at C-4 and C-11 appear at the usual chemical shift, whereas two vinyl protons resonate as a broad singlet at 4.97 δ . Oximercuration–demercuration reaction on (18) affords as the main product a crystalline compound identical in all its physico-chemical properties with the hydroxy-lactone (13).

Furthermore, the identity of (13) with tetrahydroartabsin “C”, one of the isomers obtained on catalytic hydrogenation of artabsin,²³ has been established by direct comparison.

The above described results demonstrate that the hydrogen at C-1 of vanillosmi has an α -configuration and, consequently, the absolute stereochemistry of the compound has to be as in (1).

The CD of vanillosmi (1) shows a negative band at 253 nm ($\Delta\epsilon$ –1.0) which corresponds to the $n \rightarrow \pi^*$ transition of the α -methylene- γ -lactone; CD curves of its pyrazoline derivative (19) displays a strong positive azo-band Cotton effect at 327 nm ($\Delta\epsilon$ +15.5) besides bands at 242 nm ($\Delta\epsilon$ +1.4) and 202 nm ($\Delta\epsilon$ –20.8). These data are very similar to those reported for dehydrocostus lactone²⁴ and are consistent with a lactone *trans*-fused at C-6²⁵ and with the C-11 configuration shown for the pyrazoline derivative (19).

EXPERIMENTAL

M.p.s are uncorrected. IR spectra were run in nujol on crystalline compounds and in CHCl_3 or liquid film for oily substances. UV spectra were determined in isoctane and optical rotations in CHCl_3 solution (*c* 1). PMR spectra were registered on a 60 MHz Varian NV 14 apparatus. A 3 m glass column packed with 2.5% EGS

²³ HEROUT, V., DOLEJŠ, L. and ŠORM, F. (1957) *Coll. Czech. Chem. Commun.* **22**, 1914.

²⁴ SUCHÝ, M., DOLEJŠ, L., HEROUT, V., ŠORM, F., SNATZKE, G. and HIMMELRICH, J. (1969) *Coll. Czech. Chem. Commun.* **34**, 229.

²⁵ STOCKLIN, W., WADDEL, T. G. and GEISSMAN, T. A. (1970) *Tetrahedron* **26**, 2397.

on Chromosorb CWS 80–100 mesh was used for GC, with N_2 (25 ml/min) as carrier gas. CD curves were registered on a Roussel–Jouan Dichrograph CD 185 in MeOH soln. For column chromatography, silica gel Merck 0.05–0.2 mm and for TLC thin layer plates Merck 60 F₂₅₄ (0.25 mm) were used.

Isolation of vanillosmi (1). The crude acetonic extract of the pulverized trunk wood of *V. erythopappa* (7 kg) was concentrated *in vacuo* and taken up in MeOH–H₂O (2:1). It was then extracted several times with light petrol (1.5 l.) giving 120 g of a smelling greenish oil after removal of the solvent. A portion of this oil (23 g) was chromatographed over a 30% $AgNO_3$ –silica gel (850 g) column. Four fractions were collected: fraction A (petrol–EtOAc(95:5) 10 l. eluate) contained 5 g of fatty oils; fraction B (petrol–EtOAc(9:1) 8 l. eluate) contained 12 g of (–)- α -bisabolol with small amounts of vanillosmi; fraction C (petrol–EtOAc(9:1) 8 l. eluate) contained 3 g of pure vanillosmi; fraction D (petrol–EtOAc(3:1) 8 l. eluate) contained 1 g of vanillosmi mixed with more polar substances. Fraction C and D were crystallized twice from *n*-hexane, giving 3.4 g of pure vanillosmi in long needles, m.p. 62–62.5°; b.p. 175–180°/0.2 mm (Found: C, 78.0; H, 7.8. $C_{15}H_{18}O_2$ requires: C, 78.2; H, 7.9%). $[\alpha]_D^{20} -110^\circ$; λ_{max} 218 nm (ϵ 10000); ν_{max} 1755, 1655, 895, 820 cm^{-1} . PMR: (CDCl₃) 1.82 (3H, *b* s, Me), 3.93 (1H, *t*, *J* 9.5 Hz, C-6 H), 5.04 and 5.22 (1H each, *b* s, C-4 =CH₂), 5.48 and 6.18 (1H each, *d*, *J* 3.2 Hz, C-11 =CH₂) and 5.58δ (1H, *m*, C-9 H). The MS showed prominent peaks at *m/e* 230 (M⁺, 30%), 215 (2%), 187 (5%), 172 (34%), 150 (100%), 122 (40%) and 91 (98%). CD: $\Delta\epsilon_{253} -10$ (*c* 0.164). On exposure to light and heat, vanillosmi becomes insoluble in the common organic solvents. The pyrazoline derivative (19) of vanillosmi was prepared by action of CH₂N₂ in Et₂O on a CHCl₃ soln of (1), m.p. 84°. CD: $\Delta\epsilon_{202} -20.8$ (*c* 0.038), $\Delta\epsilon_{232} +1.4$ (*c* 0.038) and $\Delta\epsilon_{327} +15.5$ (*c* 0.19).

Dihydrovanillosmi (4). A soln of 1 g vanillosmi (1) was dissolved in 13 ml MeOH and treated under stirring with 70 mg NaBH₄ in small portions with occasional cooling. After 30 min, further 60 mg of NaBH₄ were added. After 30 min the reaction mixture was acidified with AcOH, concentrated under reduced pressure, taken up in H₂O and extracted 4× with CHCl₃. The extract was dried (Na₂SO₄) and the solvent evaporated, obtaining 923 mg crude product. Crystallization from *n*-hexane yielded 600 mg pure (4). The mother liquors were chromatographed on silica gel; by elution with petrol–EtOAc(3:7) further 250 mg pure (4) were obtained, m.p. 70.5–72.5°; $[\alpha]_D^{20} -63$; ν_{max} 1770, 1660, 1050, 895 cm^{-1} . PMR: (CDCl₃) 1.22 (3H, *d*, *J* 6 Hz, C-11 Me), 1.83 (3H, *b* s, C-10 Me), 3.97 (1H, *t*, *J* 9.5 Hz, C-6 H), 5.00 and 5.18 (1H each, *b* s, C-4 =CH₂) and 5.51δ (1H, *m*, C-9 H) (Found: C, 77.65; H, 8.62. $C_{15}H_{20}O_2$ requires: C, 77.55; H, 8.68%).

Tetrahydrovanillosmi (5). To a soln of 400 mg (4) in 7 ml C₆H₆, 150 mg Wilkinson catalyst were added and the soln hydrogenated at room temp. till consumption of 1 mol H₂ (*ca.* 4 hr). The reaction mixture was evaporated to dryness and taken up in 6 ml petrol–Et₂O(1:1). The suspension was filtered over a silica gel column (20 g); prolonged elution with the same solvent mixture yielded 390 mg crude product. It gave only one spot in TLC (petrol–EtOAc, 7:3), but revealed a small impurity in GC (column temp. 200°), probably the corresponding C-4 epimer (MS gave M⁺ 234 *m/e*). As the product resisted all attempts of crystallization, it was purified by preparative GC, using the same type of column and conditions. The pure product collected was still a thick colorless oil, very sensitive to light and heat. It shows: ν_{max} 1765, 1650 cm^{-1} . PMR: (CDCl₃) 1.15 (3H, *d*, *J* 6 Hz, C-4 Me), 1.20 (3H, *d*, *J* 6 Hz, C-11 Me), 1.77 (3H, *b* s, C-10 Me), 4.10 (1H, *t*, *J* 9.5 Hz, C-6 H) and 5.45δ (1H, *m*, C-9 H) (Found: C, 76.52; H, 9.39. $C_{15}H_{22}O_2$ requires: C, 76.88; H, 9.46%).

Isotetrahydrovanillosmi (6). Tetrahydrovanillosmi (5) (300 mg), dissolved in anhyd. EtOAc (30 ml), was shaken with 900 mg palladium black in H₂ for 2 hr. The catalyst was filtered off and the crude product chromatographed on silica gel (40 g). The fraction eluted with *n*-hexane–EtOAc (4:1), was crystallized from *n*-hexane and 150 mg of pure (4) were obtained, m.p. 128°; $[\alpha]_D^{20} +37.7^\circ$; ν_{max} 1765 cm^{-1} . PMR: (CDCl₃) 0.92 (3H, *d*, *J* 6 Hz, C-4 Me), 1.22 (3H, *d*, *J* 6 Hz, C-11 Me), 1.75 (3H, *b* s, C-10 Me) and 3.73δ (1H, *t*, *J* 9.5 Hz, C-6 H).

O-Acetyl-dihydroisophoto- α -santonic lactone (7). *O*-Acetyl-isophoto- α -santonic lactone (2) (3.5 g) in anhyd. EtOH (200 ml) was hydrogenated for 4 hr over freshly prepared 10% Pd/C (1 g) at 15 atm. The reaction mixture was filtered on celite and evaporated to dryness. The residue crystallized from petrol–EtOAc yielding 2 g pure (7), m.p. 171–172°; $[\alpha]_D^{20} -61.7^\circ$, identical to those already reported by White *et al.*¹⁸ Purification of the mother liquors by chromatography never afforded further amounts of (7) owing to the easy epimerization at C-4 induced by the absorbent.

Guai-1(10)-en-6, 12-olide (6) from (7). The same procedure adopted by Suchy *et al.*¹⁹ was followed.

Thioacetalization of (10). 4-epi-Dihydroisophoto- α -santonic lactone (10) (1 g) was dissolved in 1,2-ethanedithiol, 4 drops of BF₃–Et₂O were added, directly distilled into the reaction flask. After 3 hr at room temp, the reaction mixture was diluted with CHCl₃ and washed thoroughly with aq. 10% NaHCO₃. Evaporation of the solvent afforded 1.2 g of crude product containing both thioacetals (11) and (17) in a ratio 3:7. The mixture was chromatographed on AIOX-3 (36 g); elution with petrol–Et₂O(1:1) gave 300 mg amorphous (11), which resulted pure both in TLC (petrol–EtOAc, 1:1) and GC (column temp. 290°), and lacked OH bands in its IR spectrum. By further elution with Et₂O, 700 mg pure (17) were obtained, m.p. 230° (from EtOAc); $[\alpha]_D^{20} -2.78^\circ$; $[\alpha]_{365}^{20} +14.1^\circ$ (lit.²¹ m.p. 233.5–234°); $[\alpha]_D^{20} \pm 0^\circ$.

Desulphurization of (11). The thioacetal (11) (200 mg) was refluxed in anhyd. EtOH under vigorous stirring with a large excess of Raney–Nickel for 1 hr. After filtration and evaporation of the solvent, 150 mg (9) were obtained. It was purified by micropreparative GC (Column temp. 200°) and crystallized from *n*-hexane, m.p. 75–76°; $[\alpha]_D^{20} -31.19^\circ$ identical to those previously reported.²¹

Oxymercuration-demercuration of tetrahydrovanillosmuin (5). Tetrahydrovanillosmuin (5) (100 mg) in purified THF was added to a stirred soln of $Hg(OAc)_2$ (136 mg in 0.5 ml H_2O). After 2 hr at room temp. the reaction mixture was first treated with 3 M $NaOH$ (0.5 ml), then with a soln of $NaBH_4$ (0.5 M) in 3 M $NaOH$, till complete precipitation of metallic Hg . After acidification with $AcOH$ and filtration, the soln was extracted with $CHCl_3$. Evaporation of the solvent yielded 108 mg of residue, which was chromatographed on silica gel (10 g). Elution with petrol-EtOAc, 7:3, gave 60 mg pure (13) which crystallized from diisopropyl ether, m.p. 135-6°; $[\alpha]_D^{20} + 22.6^\circ$, v_{max}^{IR} : 3468, 1740 cm^{-1} . PMR: ($CDCl_3$) 0.93 (3H, d, J 7 Hz, C-4 Me), 1.20 (3H, d, J 7 Hz, C-11 Me), 1.21 (3H, s, C-10 Me) and 4.45δ (1H, b s, C-6 H) (Found: C, 71.48; H, 9.31. $C_{15}H_{24}O_3$ requires: C, 71.50; H, 9.51%). Elution with petrol-EtOAc(4:6) afforded 5 mg of pure (12) which was crystallized from diisopropyl ether, m.p. 127° (lit.²¹ 125.5-127.5°); $[\alpha]_D^{20} + 20^\circ$.

Saponification of O-acetyl-isophoto- α -santonic lactone (2). O-Acetyl-isophoto- α -santonic lactone (2) (5 g) was stirred with 5% aq. KOH (250 ml) till complete soln (ca. 4 hr). After addition of H_2SO_4 till pH 3, the soln was left for 45 min, then extracted with EtOAc. Evaporation of the solvent afforded 4.2 g of a thick oil which was crystallized from petrol-EtOAc, obtaining 2.8 g of pure (14). The mother liquors revealed two spots in TLC and were chromatographed on silica gel (50 g). Elution with petrol-EtOAc (3:7) afforded 700 mg of a crystalline compound, m.p. 115-118°; $[\alpha]_D^{20} 128^\circ$, whose IR and MS were almost superimposable to those of (14). PMR: (C_5D_5N) 1.23 (3H, d, J 6 Hz, C-11 Me), 1.48 (3H, s, C-10 Me), 2.20 (3H, b s, C-4 Me), 5.20 (1H complex d, main J 10.2 Hz, C-6 H) and 4.80δ (1H, broad signal, OH): this compound is probably the C-1 epimer of (14). Elution with petrol-EtOAc (1:4) afforded further 800 mg pure (14).

Dihydroisophoto- α -santonic lactone (15). Isophoto- α -santonic lactone (14) (5 g), in anhyd. $EtOH$ (200 ml) was hydrogenated for 4 hr at 18 atm over freshly prepared 10% Pd/C . The mixture was filtered on celite and the solvent evaporated. Crystallization of the crude product afforded 3 g pure (15). By rapid chromatography on silica gel of the mother liquors, using peroxide-free anhyd. Et_2O as eluent, further 800 mg pure (15) could be recovered. Physical and chemical properties were identical to those previously reported.²⁰

Thioacetalization of (15). Dihydroisophoto- α -santonic lactone (15) (2.39 g) was dissolved in 1,2-ethanedithiol (32 ml) and the soln cooled in ice. Few drops of BF_3-Et_2O were distilled directly into the reaction flask and the soln was left overnight at 0°. After dilution with $CHCl_3$, the soln was washed thoroughly with aq. 5% $NaHCO_3$, dried over Na_2SO_4 and evaporated to dryness. Crystallization of the crude product from EtOAc gave 2.1 g of pure (16), m.p. 220-222°; $[\alpha]_D^{20} -41^\circ$. PMR: (C_5D_5N) 1.23 (6H, two superimposed d, J 6.5 Hz, C-11 and C-4 Me), 1.37 (3H, s, C-10 Me), 3.23 (4H, s, —S—CH₂—CH₂—S—), 4.35 (1H, unresolved signal, C-6 H) and 4.92δ (1H, broad signal, OH) (Found: C, 59.71; H, 7.21. $C_{17}H_{26}O_3S_2$ requires: C, 59.65; H, 7.10%).

Dethioacetalization of (16). The same procedure adopted for the preparation of (9) was followed. From 200 mg (16), 140 mg crystalline (12) were obtained.

Dehydration of (12). The hydroxylactone (12) (450 mg) was dissolved in a small vol. of dry pyridine and the soln cooled at -20°. 3 ml of $SOCl_2$ soln (1 ml) in cold dry pyridine (19 ml) were added and the reaction mixture left overnight at -20°. The soln was poured in ice and extracted with $CHCl_3$; the extract, dried over Na_2SO_4 and evaporated *in vacuo*, gave a crude product, which was purified over 15% $AgNO_3$ -silica gel. Elution with petrol-EtOAc(9:1) afforded the anhydrolactone (18) (110 mg) which could not be crystallized, $[\alpha]_D^{20} + 26^\circ$; v_{max}^{IR} 1765, 1640, 1605, 900 cm^{-1} . PMR: ($CDCl_3$) 0.95 (3H, d, J 6.5 Hz, C-4 Me), 1.22 (3H, d, J 6.5 Hz, C-11 Me), 4.05 (1H, t, J 9.5 Hz, C-6 H) and 4.97δ (2H, b s, C-10=CH₂).

Oxymercuration of (18). The same procedure adopted for the oxymercuration of (5) was followed. The crude reaction product was purified by preparative TLC. Starting from 40 mg (18), 20 mg pure crystalline (13) were obtained.

Acknowledgements—We thank Professor V. Herout who carried out the comparison of the physical constants of tetrahydroartabsin "C" and (13) and Dr. S. Vašičková for CD spectra. The Consiglio Nazionale delle Ricerche, Rome, is acknowledged by A.C., P.G., G.J. and F.O. for financial support.